Tunnel Technical Feasibility

- Process
- Finding: Tunnel is Feasible
- Principle characteristics and anticipated conditions are within the realm of previously constructed tunnels

Tunnel Technical Feasibility

- Process
- Finding: Tunnel is Feasible
- Principle characteristics and anticipated conditions are within the realm of previously constructed tunnels

Attribute	Straits Tunnel	State of Practice
Excavated Diameter	12 ft	20-25 ft common; largest is 58 ft
Length	4 miles	Many tunnels 10 miles and longer
Water pressure (depth)	10-11 bar	14 bar (18-20 bar anticipated in NY tunnel)
Geology	Limestone Dolomite Shale	Many tunnels in these and stronger rock types

Tunnel Construction

Tunnel Grouting

Feasible Tunnel Cross-Section

Tunnel Cross-Section

Gastau tunnel (17.5 ft internal diameter)

Tunnel Alignment

SCALE: 1"=1000"

TUNNEL PROFILE (5X VERTICAL EXAGGERATION)
SCALE: 1"-10007 HORZ

Geotechnical Site Investigation

TUNNEL PROFILE (5X VERTICAL EXAGGERATION)

Contemporary Comparison

Eurasia Tunnel

- 45 ft excavated diameter
- 430 ft below water
- Experienced 12-14 bar water pressure

2.1 mile long, 45 ft diameter

Lake Mead Intake 3 Tunnel

- 20 ft excavated diameter
- 450+ ft below water
- Up to 14 bar water pressure

Alignment Profile

ARUP

Rondout Bypass Tunnel

- 22 ft excavated diameter
- 900 ft deep
- Potential 20 bar water pressure
- Under construction now

Feasible Approach

North Shore Portal

North Shore Portal

Niagara tunnel portal (45 ft diam. TBM)

South Shore Portal

South Shore Portal North Shore Project Area ASSUMED BEDROCK SURFACE WEATHERED ROCK -TUNNEL OVERBURDEN ,-PORTAL FLOOR SHORING SYSTEM -ORIGINAL GROUND 700 600 ELEVATION 500 ROCK 400 210+00 400 222+50 212 + 50215+00 217+50 220+00 South Shore Project Area

Tunnel Technical Feasibility

- Process
- Finding: Tunnel is Feasible
- Principle characteristics and anticipated conditions are within the realm of previously constructed tunnels

Attribute	Straits Tunnel	State of Practice
Excavated Diameter	12 ft	20-25 ft common; largest is 58 ft
Length	4 miles	Many tunnels 10 miles and longer
Water pressure (depth)	10-12 bar	14 bar (18-20 bar anticipated in NY tunnel)
Geology	Limestone Dolomite Shale	Many tunnels in these and stronger rock types